О навесных фасадных системах с воздушными зазорами

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 — T2) / q Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение: R1 = (T1 — T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора) Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам: R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  • r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры.

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Стоимость монтажа вентилированных фасадов

Рассмотрим, как рассчитать количество материала и общую стоимость проекта вентфасада.

Пример расчета количества материала для монтажа навесного вентилируемого фасада частного дома:

Дано:

  • дом одноэтажный;
  • общая площадь 80 м.кв.;
  • материал строительства – пеноблок конструктивный (плотность 900 кг/м.кв.);
  • размеры дома 10х8 м.п.;
  • высота стены – 3 м.п.;
  • площадь окон:

Задача:

Обустройство вентиляционного фасада с заданными параметрами:

  • утеплитель – базальтовая вата;
  • толщина утеплителя – 50 мм;
  • облицовочный материал – металлический сайдинг.

Расчет:

  • рассчитываем площадь поверхности, которую нужно закрыть навесным фасадом:
  • общая площадь стен – площадь окон и дверей = 98 м.кв.
  • рассчитываем потребность в материалах:

Монтаж вентилируемых фасадов – цена за м2 стены с работой (в таблице приведены ориентировочные данные)

Вид облицовочного материалаСтоимость, руб/м.кв.
Керамогранит2960
Фиброцементные плиты3170
Профнастил (профлист)/td>2530
Композитные панели3480
Керамогранит (межэтажная система)3030
Керамогранит (лайт)2890

Облицовояный материал для навесного вентфасада

Типичные ошибки при монтаже вентилированного фасада

  • ошибки в расчетах. Вследствие которых, каркас не справляется с нагрузкой;
  • использование деформированных элементов;
  • изменение технологии устройства системы направляющих;
  • неразумная экономия на материале, крепежах и инструментах;
  • использование некачественного утеплителя;
  • нарушение техники безопасности.

Советы по монтажу навесного вентилируемого фасада

  • лучше доверить расчет и проектирование системы профессионалам, т.к. без опыта установить своими руками трудно;
  • проверяйте качество дюбелей до начала работы;
  • погрешность монтажа должна находиться в допустимых пределах;
  • установка паронитовой прокладки между стеной и кронштейном уменьшит теплопотери и позволит скомпенсировать движение системы в период эксплуатации;
  • монтаж вентфасада относится к сложным работам, поэтому для их выполнения целесообразно привлекать серьезные компании, имеющие авторитет на строительном рынке.

Правильно установленный и смонтированный вентилированный фасад – повысит энергоэффективность дома и улучшит его внешний облик (экстерьер).

Воздушный зазор и теплоизоляция

Иногда воздушный зазор считают дополнительным теплоизоляционным слоем, который дает вклад в сопротивление стены теплопередаче (рисунок 5) .

Рисунок 5 — Схема для расчета сопротивления теплопередаче навесного вентилируемого фасада :

a — толщина облицовки,

b — ширина воздушного зазора,

c — толщина теплоизоляции,

m — толщина несущей стены,

n — толщина внутренней отделки

Однако согласно стандарту EN ISO 6946 сопротивление теплопередаче воздушной прослойки (воздушного зазора) внутри стены зависит от того, насколько она является вентилируемой.

Вертикальная воздушная прослойка считается хорошо вентилируемой, если, площадь отверстий составляет более 1500 мм 2 на метр ее длины в горизонтальном направлении. Воздушный зазор вентилируемого фасада относится к хорошо вентилируемым воздушным прослойкам, так площадь его вентиляционных отверстий составляет не менее 50 см 2 = 5000 мм 2 .

Поэтому согласно EN ISO 6946 расчет сопротивления теплопередаче вентилируемого фасада должен проводиться без учета сопротивления воздушной прослойки и наружной облицовки (b и a на рисунке 5). Температура воздуха в зазоре считается равной температуре наружного воздуха, а сопротивление поверхности стенки зазора принимается равным 0,13 м 2 ·К/Вт как для внутренней поверхности, а не 0,04 м 2 ·К/Вт, как это применяется для наружных поверхностей .

Таким образом, вклад вентилируемого воздушного зазора в сопротивление стены теплопередаче составляет всего 0,13 м 2 ·К/Вт и не зависит от его толщины.

Каким должен быть размер вентзазора

Текущие требования к размерам вентзазора были разработаны на основе длительных исследований, чьей целью было определение оптимальной толщины зазора между навесным фасадом и внешними стенами отделываемого здания для обеспечения нужной теплоизоляции и максимального срока службы конструктивных элементов подобных фасадов.

Согласно действующим правилам монтажа таких конструкций, необходимо учесть ряд нюансов для обеспечения свободной циркуляции воздуха между отделываемой стеной и панелями навесных фасадов. С этой целью в документе СП 23-101-2000 «Проектирование теплозащиты зданий» было указано, что толщина вентзазора должна быть не меньше 40 и не больше 100 миллиметров.

В странах Европы и США регламентирован размер вентзазора 25-55 миллиметров. Такая разница объясняется более суровыми климатическими условиями в большинстве регионах России и в необходимости создания более качественной теплоизоляции несущих стен зданий.

Технология монтажа вентфасада с воздушной прослойкой

Вентзазор в вентилируемом фасаде монтируется на внешних стенах здания следующим образом:

  • первый этап заключается в проведении подготовительных работ. Этот этап не предполагает проведение сложных работ. Он заключается в демонтаже всех навесных элементов с фасада здания, а также в устранении имеющихся дефектов в виде трещин с помощью специальной шпаклевки и штукатурки;
  • разметка фасада. В рамках этого этапа происходит замер стен, а также расстановка маяков. Эти элементы будут служить в качестве основных ориентиров при проведении монтажных работ;
  • работы по монтажу элементов каркаса. После предварительной подготовки и разметке стены начинаются работы по установке конструктивных элементов каркаса будущего навесного фасада. Для этих целей применяются прочные металлические профили, отличающиеся высокой стойкостью к коррозии;
  • работы по креплению внешних элементов здания. После завершения работ по монтажу каркасных составляющих, потребуется приступить к установке других функциональных элементов (водоотливов, откосов, сточных труб, термопрокладок и так далее);
  • утепление стен. Для утепления здания используется специальный утеплитель, который может быть изготовлен из самых разных материалов. Материал и толщина утеплителя подбирается с учетом специфики строения, а также климатических условий;
  • монтаж парозащиты и ветрозащиты. Такие защитные пленки крепятся непосредственно к утеплителю с помощью специальных дюбелей. С целью обеспечения необходимой герметичности стыков между пленок, применяется специальная клейкая лента;
  • финальная отделка внешних стен. Декоративные фасадные панели монтируются так, чтоб они не имели прямого контакта с утеплителем и пароизоляцией. Благодаря наличию небольшой воздушной прослойки достигается существенно повышение качества теплоизоляции внутренних помещений строения. Кроме того, это создает дополнительную надежную шумоизоляцию.

“ В целом при следовании рекомендаций им инструкций по монтажу таких навесных вентилируемых фасадов, особых проблем с отделкой домов с помощью подобных конструкций возникнуть не должно.”

Общие сведения

Как уже упоминалось, в вентилируемом фасаде отдельные слои конструкции располагаются следующим образом (от внутренней поверхности к наружной): ограждающая конструкция (стена), теплоизоляция, в некоторых случаях паропропускающая гидроветрозащитная пленка, воздушная прослойка, защитный экран. Такая схема является оптимальной, т.к. слои различных материалов до воздушной прослойки располагаются по мере уменьшения коэффициентов теплопроводности и увеличения коэффициентов паропроницаемости. Наличие вентилируемой воздушной прослойки способно существенно улучшить влажностное состояние слоя теплоизоляции, что является преимуществом рассматриваемой конструкции по сравнению с другими.
Наружное расположение дополнительной теплоизоляции наилучшим образом защищает стену от попеременного замерзания и оттаивания. Выравниваются температурные колебания массива стены, что препятствует возникновению деформаций. Из-за того, что в толще несущей стены практически отсутствуют перепады температур, температурно-деформационные швы работают в минимальной степени и весь конструктив функционирует в оптимальном режиме. Зона конденсации сдвигается в наружный теплоизоляционный слой, который граничит с вентилируемой воздушной прослойкой.
Другим достоинством наружной теплоизоляции является увеличение теплоаккумулирующей способности массива стены. В этом случае при отключении источника теплоснабжения стена будет остывать в несколько раз медленнее, чем при внутреннем расположении слоя теплоизоляции такой же толщины.
Совместное применение навесного вентилируемого фасада и теплоизоляционного слоя существенным образом повышает звукоизоляционные характеристики ограждающей конструкции, поскольку фасадные панели и теплоизоляция обладают звукопоглощающими свойствами в широком диапазоне частот (например, звукоизоляция стены из легкого бетона повышается в 2 раза при устройстве навесного фасада с применением облицовочных панелей).
Наличие воздушной прослойки в вентилируемом фасаде принципиально отличает его от других типов фасадов, т.к. внутренняя влага свободно удаляется в окружающую среду. Вентилируемая воздушная прослойка снижает также и теплопотери в отопительный период, т.к. температура воздуха в ней несколько выше, чем снаружи. В свою очередь, наружный экран из отделочных материалов защищает расположенный за ним слой теплоизоляции, а также саму стену, от атмосферных воздействий. Летом он выполняет функцию солнцезащитного экрана, отражающего значительную часть падающего на него потока лучистой энергии.
Для обеспечения пожарной безопасности в систему навесных фасадов включаются материалы и изделия, относящиеся к категории негорючих (НГ) либо трудногорючих (Г1), препятствующие распространению огня. Кроме того, в соответствии с существующими нормативными документами, системы вентилируемых фасадов должны проходить обязательные пожарные испытания, на которых определяется максимальная высота применения системы и ее пожарная пригодность. Основные достоинства вентилируемых фасадов:

  • возможность использования современных фасадных облицовочных материалов;
  • высокие тепло- и звукоизоляционные характеристики;
  • вентиляция теплоизоляционного слоя обеспечивает удаление влаги, образующейся в результате диффузии водяного пара изнутри здания;
  • защита стены и теплоизоляции от атмосферных воздействий;
  • нивелирование термических деформаций;
  • возможность проведения фасадных работ в любое время года – исключены “мокрые” процессы;
  • отсутствие специальных требований к геометрическим параметрам несущей стены (не требуется предварительное выравнивание);
  • длительный срок безремонтной эксплуатации (25-50 лет в зависимости от применяемого материала).

На основании приведенной информации можно сделать вывод, что вентилируемый фасад является современной прогрессивной системой, которую можно применять как для новых, так и для реконструируемых зданий.
 

Металлокассеты для фасада

Раздел облицовочных панелей для фасада из оцинкованной  стали ,алюминиевого листа, меди и бронзы занимает большой сегмент рынка в фасадном строении систем крепления. Дело в том, что обработка металла и современное оборудование для лазерной резки и обработки листовых материалов стремительно идёт вперёд, постоянно модернизируется и наше оборудование в компании “Оптима Фасад”.

Список оборудования компании:

  1. Лазерный станок для перфорации
  2. Гибочный станок Dorma
  3. Автоматическая гильотина
  4. Линия покраски (6 метров)
  5. Пробивной стан

Любые решения кассеты закрытого или открытого типа крепления с лазерной резкой и автоматической подачей, гибочным оборудованием позволяет нам изготовить металлокассеты с различным радиусом и вальцеванием (колонны, входные группы, сложные геометрические изделия.)

Помимо стандартных кассет из оцинкованной стали, мы производим следующий тип металлокассет:

  • Перфорированные металлокассеты
  • Стальные кассеты
  • Изделия из меди
  • Изделия из бронзы
  • Закрытый тип кассет
  • Разноуровневые архитектурные декоры
  • Доборные элементы

Стоимость подсистемы металлокассет на м2

 Смета

МеталлокассетыТаблица расчёта комплектующих вентилируемого фасада из металлокассет

п.п. НаименованиеЕд. изм.РасходКол-воЗапас м2Стоимость штСтоимость комплект (м2)

 Визуализация конструкции

1Профиль Г-обр. 40*40*1.2пог/м0,750,83             45,40 ₽                                                 87,46 ₽
2Профиль верт.. 60*40*1.2пог/м1,101,21             94,58 ₽                                               114,44 ₽
3Профил-обр. ВУ внешний уголпог/м0,180,20          195,00 ₽                                                 38,61 ₽
4Кронштейн Г-обр. 50L-150шт2,222,44             25,70 ₽                                                 62,76 ₽
5Анкер 10*100шт2,222,44             16,00 ₽                                                 39,07 ₽
6Паронитовая прокладкашт2,222,44               4,20 ₽                                                 10,26 ₽
7Заклепка 4,0х10шт10,011,0               2,20 ₽                                                 24,20 ₽
9Саморезы EPDMшт3,503,85               1,90 ₽                                                    7,32 ₽
10Планка стартшт0,500,50               0,75 ₽                                                    0,38 ₽
11Заклепка 4,0*8 нержшт6,77,37               2,00 ₽                                                 14,74 ₽
сметаЦена м2:Тип: Оцинкованная: 389,22 ₽

Композитные панели

Изначально композитными материалами называли листовые композитные панели “Алюкобонд” и название самого материала было размыто и в проекте различных зданий не “фигурировало”. Начало существования этого прекрасного материала, можно было заметить с приходом в нашу страну высотного строительства торговых центров и “небоскрёбов” по типу: Башня Федерации, Москва сити, и подобных высоток, где использовался данный материал.

Зачем нужен воздушный зазор

Воздушная прослойка в вентилируемых фасадах устраивается для создания вертикального воздушного потока, выносящего избыточную влагу наружу. Это помогает минимизировать вероятность коррозии конструктивных элементов таких фасадов. К другим важным особенностям этих фасадов стоит отнести:

  • обеспечение надежной теплоизоляции;
  • защита внешних стен здания от разрушения в результате длительного воздействия атмосферных факторов;
  • создание шумо и виброизоляции;
  • улучшение показателей пожарной безопасности здания при условии использования огнестойких материалов;
  • высокая ремонтопригодность;
  • универсальность, позволяющая использовать такие конструкции для облицовки новых и старых зданий;
  • неограниченные возможности по отделке зданий, позволяющие реализовать любые архитектурные задумки.

Теплоизолирующие свойства таких фасадов дают возможность сократить расходы на отопление зданий на 30-40 процентов. Это помогает достаточно быстро окупить монтаж подобных конструкций.

“Использующийся в вентфасадах утеплитель выводит точку росы за предел несущих стен. Это обеспечивает сохранность и конструктивную целостность основных конструкций здания и оказывает непосредственное влияние на увеличение сроков службы строения.”

Технология монтажа вентфасада с воздушной прослойкой

Вентзазор в вентилируемом фасаде монтируется на внешних стенах здания следующим образом:

  • первый этап заключается в
    проведении подготовительных работ. Этот этап не предполагает проведение сложных
    работ. Он заключается в демонтаже всех навесных элементов с фасада здания, а
    также в устранении имеющихся дефектов в виде трещин с помощью специальной
    шпаклевки и штукатурки;  
  • разметка фасада. В рамках этого
    этапа происходит замер стен, а также расстановка маяков. Эти элементы будут
    служить в качестве основных ориентиров при проведении монтажных работ;
  • работы по монтажу элементов
    каркаса. После предварительной подготовки и разметке стены начинаются работы по
    установке конструктивных элементов каркаса будущего навесного фасада. Для этих
    целей применяются прочные металлические профили, отличающиеся высокой
    стойкостью к коррозии;  
  • работы по креплению внешних
    элементов здания. После завершения работ по монтажу каркасных составляющих,
    потребуется приступить к установке других функциональных элементов (водоотливов,
    откосов, сточных труб, термопрокладок и так далее);
  • утепление стен. Для утепления
    здания используется специальный утеплитель, который может быть изготовлен из
    самых разных материалов. Материал и толщина утеплителя подбирается с учетом
    специфики строения, а также климатических условий;
  • монтаж парозащиты и ветрозащиты. Такие
    защитные пленки крепятся непосредственно к утеплителю с помощью специальных
    дюбелей. С целью обеспечения необходимой герметичности стыков между пленок,
    применяется специальная клейкая лента;
  • финальная отделка внешних стен. Декоративные
    фасадные панели монтируются так, чтоб они не имели прямого контакта с
    утеплителем и пароизоляцией. Благодаря наличию небольшой воздушной прослойки
    достигается существенно повышение качества теплоизоляции внутренних помещений
    строения. Кроме того, это создает дополнительную надежную шумоизоляцию.

Узлы крепления фасадной системы

Как не просто любому новому заказчику в строительстве разобраться с обилием применяемых систем из различного состава металла и типу крепления разнообразного каркаса подконструкции: сейчас на рынке более 50 заводов изготовителей с официальными и подтвержденными по испытаниям и технической документации конструкций.

Однако не каждый производитель старается задуматься о затратах непосредственно заказчика и вовремя решить поставленные задачи по быстрой комплектации проекта, тем более необходимо успеть всё запроектировать, провести консультацию и оказать техническую поддержку клиенту, и по необходимости даже изготовить образцы и стенды.

Стандартный набор узлов системы фасада – это решение для проектировщика перед проектированием всего здания в целом, надстроек на кровле (которые также необходимо запроектировать).

Проблема заключается в том, что к каждому зданию архитектор-дизайнер не руководствуется имеемой документацией (техническим свидетельством) и пожарной экспертной документацией для разработки дизайна и концепции здания, проекты и АГР на фасады с цветовой раскладкой облицовки получают без согласования типа системы и какой-либо привязки к документации “Минстроя” или “ФАУ-ФЦС”, что после вызывает ряд вопросов у заказчика из серии: как выполнить данный вентилируемый фасад по технологии?

Ответы на эти вопросы и согласование (на берегу) такого здания позволит уберечь любого строителя от ненужных трат или пожарных испытаний участка фасада на стендах, выполнить работу в срок без лишних затрат.

Воздушный зазор и теплоизоляция

Иногда воздушный зазор считают дополнительным теплоизоляционным слоем, который дает вклад в сопротивление стены теплопередаче (рисунок 5) .

Рисунок 5 — Схема для расчета сопротивления теплопередаче навесного вентилируемого фасада :

a — толщина облицовки,

b — ширина воздушного зазора,

c — толщина теплоизоляции,

m — толщина несущей стены,

n — толщина внутренней отделки

Однако согласно стандарту EN ISO 6946 сопротивление теплопередаче воздушной прослойки (воздушного зазора) внутри стены зависит от того, насколько она является вентилируемой.

Вертикальная воздушная прослойка считается хорошо вентилируемой, если, площадь отверстий составляет более 1500 мм 2 на метр ее длины в горизонтальном направлении. Воздушный зазор вентилируемого фасада относится к хорошо вентилируемым воздушным прослойкам, так площадь его вентиляционных отверстий составляет не менее 50 см 2 = 5000 мм 2 .

Поэтому согласно EN ISO 6946 расчет сопротивления теплопередаче вентилируемого фасада должен проводиться без учета сопротивления воздушной прослойки и наружной облицовки (b и a на рисунке 5). Температура воздуха в зазоре считается равной температуре наружного воздуха, а сопротивление поверхности стенки зазора принимается равным 0,13 м 2 ·К/Вт как для внутренней поверхности, а не 0,04 м 2 ·К/Вт, как это применяется для наружных поверхностей .

Таким образом, вклад вентилируемого воздушного зазора в сопротивление стены теплопередаче составляет всего 0,13 м 2 ·К/Вт и не зависит от его толщины.

Воздушный зазор и выравнивание давления

4.1. Дренаж и вентиляция

Наружная облицовка обычного навесного вентилируемого фасада предназначена защищать стену здания от массового проникновения воды при прямом воздействии косого дождя. Тем не менее, часть дождевой воды неизбежно проникать через облицовку в воздушный зазор. При правильной конструкции фасада эта вода быстро удаляется наружу за счет механизмов, которые работают в воздушном зазоре:

  • дренажа воды вниз к дренажным отверстиям и
  • высушивания влаги внутри зазора за счет вентилирования постоянным потоком воздуха.

4.2. Перепад давления воздуха

Когда ветер дует на навесной фасад, он создает на наружной стороне облицовки более высокое давление, чем на внутренней стороне облицовки. Воздух пытается выровнять это различие путем перетекания из зоны высокого давления в зону низкого давления. Это означает, что воздух будет проходить через любые отверстия и щели, чтобы выровнять разность давлений. Если при этом идет дождь, то этот воздух будет нести с собой в больших количествах внутрь фасада дождевую воду (рисунок 2).

Рисунок 2 — Принцип движения воды под воздействием перепада давления

4.3. Воздушный зазор и выравнивание давления

Для защиты от чрезмерного проникновения влаги под воздействием перепада давления применяют специальные конструкции навесных вентилируемых фасадов. Конструкция этих фасадов включает применение изолированных секций с надежной воздухопроницаемостью и дополнительными отверстиями для дренажа и вентиляции. Для эффективного выравнивания давления эти секции должны иметь достаточно жесткие стенки и ограниченный объем воздуха .

Эти секции могут иметь различные размеры в зависимости от формы и высоты здания, например, на углах и около крыши — меньше, в середине здания — больше .

В обычных навесных вентилируемых фасадах принцип выравнивания давления также работает в той или иной степени. При малом воздушном зазоре объем воздушной полости ограничен, и выравнивание давления может быть заметным. При большом воздушном зазоре объем воздуха в полости слишком велик, чтобы могло происходить какое-либо выравнивание давления.

Рисунок 3 — Различия в конструкциях фасадов :

а — с дренажом и вентиляцией;

б — с дренажом, вентиляцией и выравниванием давления

Основные характеристики

Под понятием вентилируемый фасад принято считать конструкции, состоящие из обрешётки, слоя теплоизоляции и облицовочных панелей. В большинстве случаев технология используется при начальном строительстве, а также полной или частичной реконструкции зданий.

Полный расчёт выполняется профессиональными проектировщиками. При этом учитывается расположение объекта недвижимости, а также его характеристики. Например, здание, построенное на открытом участке, будет иметь совершенно другие характеристики по сравнению с тем, которое расположено в черте города. Главным отличием фасада с вентилируемым воздушным зазором от других систем является присутствие в системе слоя теплоизоляции, металлической подсистемы и облицовочного слоя, который определяет заключительный вид здания. Такие конструкции успешно применяются для теплоизоляции и декоративной отделки многоэтажных зданий, достигающих высоты более 150 метров.

Номинальная ширина воздушного зазора — компромисс факторов

Таким образом, при выборе оптимальной ширины воздушного зазора необходимо учитывать следующее:

номинальный зазор не должен быть менее 6 мм, чтобы обеспечивать эффективный разрыв капиллярного движения влаги внутрь здания и дренаж жидкой воды;

номинальный зазор не должен быть менее 20 мм, чтобы обеспечивать возможность отклонений стены от вертикали в пределах нормальных строительных допусков;

увеличение ширины зазора не дает повышения сопротивления стены теплопередаче;

чрезмерное увеличение зазора повышает риск распространения пламени при пожаре;

чем больше ширина зазора, тем больше вылет кронштейнов, больше их толщина, количество, масса и стоимость;

чем шире воздушный зазор, тем меньше эффективность выравнивания давления снаружи и внутри облицовки, и, следовательно, большее количество воды, которая проникает за облицовку.

1. Немецкая ассоциация производителей навесных вентилируемых фасадов — http://www.fvhf.de/Fassade/VHF-System/Aufbau-und-Technik.php

2. DIN 18615-1:2010 Cladding for external walls, ventilated at rear — Part 1: Requirements, principles of testing

3. ETAG 034 Guideline for European technical approval of kits for external wall cladding, 2014

4. ТР 161-05 Технические рекомендации по проектированию, монтажу и эксплуатации навесных фасадных систем, 2005 5. Проект НОСТРОЙ (2014) Навесные фасадные системы с воздушным зазором. Рекомендации по критериям выбора, проектированию, устройству, ремонту и эксплуатации

6. СП РК 5.06-19-2012 Проектирование и монтаж навесных фасадов с воздушным зазором, Республика Казахстан

12. EN ISO 6946-2008 Building components and building elements — Thermal resistance — Calculation method

ООО «Алюком»г. Москва, ул. Нагатинская, д. 16, стр. 9, офис 2-5

Производство и склад: Калужская обл., г. Малоярославец, ул. Калужская, 64.

Композитные панели цена

Композитные кассетыВизуализация
Алюминиевая система композит вертикальная
Расчет стоимости работ и материалов по монтажу композитных панелей Оптима
Монтаж
Наименование работКол-воРасходСтоимость за ед. изм.Цена
Монтаж композитных панелей с подсистемой из алюминия.1м21850       1 850,00 ₽
Итого:       1 850,00 ₽
Кронштейн несущий КН-1000,90,976                  68,03 ₽
Кронштейн опорный КН-1002,12,155         115,50 ₽
Профиль Тавр 50*70*1,7 мм. Алюминиевый Т-702,252,25174               391,50 ₽
Комплектующий материал
Наименование и размерКол-воед. из.Стоимость за ед. изм.Цена
Расходные материалы для монтажа композитных панелей1м2.150          150,00 ₽
Крепёж для подсистемы крепления (икля и салазка)1м2.520          520,00 ₽
композитная панель RAL (*Любой цвет по проекту)1м2.1020       1 020,00 ₽
Транспортные расходы и сборка.1шт.По Москве.       3 000,00 ₽
Итого:        4 690,00 ₽
Общая стоимость работ и материалов с доставкой  на м2 составляет:  6 540,00 ₽

Натуральный камень

В системе крепления вентилируемых фасадов натуральный камень с монтажными работами в торцевой пропил камня играет важную роль в отделке как основной плоскости фасада (рядовой зоны) так и отделке цоколя или входных групп. Дело в том что существует три способа его установки на подсистеме, и три типа крепления.

Варианты крепления камня

  1. Штифтовое крепление камня
  2. Пропил торцевой
  3. Кайлы
  • Вертикальная
  • Горизонтально-вертикальная
  • Межэтажная

Проектирование камня

  1. По чертежам и планам
  2. По геодезии
  3. Комбинированное

Любой тип крепления основывается на статическом расчёте системы, и подбирается исходя из веса на м2 облицовки системы. Сложные архитектурные формы камня устанавливаются исходя из проектных решений здания и его геометрии.

Бетонная плитка

В 2012 году появилась возможность разработать систему для крепления бетонной плитки и разработать систему крепления данных облицовочных материалов.

Простота и надёжность данных систем из бетонной плитки, это фактура и неповторимость цветопередачи по сравнению с кирпичного формата облицовки. Система и подконструкция крепления плиток расположена на несущих стартовых и рядных планках под бетонную плитку и позволяет проработать грамотный и качественный монтаж узлов за счёт специального фиксатора (истанцира плитки)

Система включает:

  1. Консоль несущую
  2. Планку стартовую под плитку
  3. Рядную шину
  4. Прокладка консоли
  5. Вставка горизонтальная
  6. Направляющая 65*30*1,2 мм. (С-обр.)
  7. Планка внешнего угла.
  8. Угловой элемент L-образный
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий