Схема подключения люминесцентных ламп: подключаем люминесцентные лампы с дросселем

Как проверить лампу дневного света?

В случае если лампа перестала гореть, то, скорее всего, произошел разрыв вольфрамовой нити, с помощью которой подогревается газ, тем самым провоцируя свечение люминофора. В течении своей жизни вольфрам потихоньку испаряется, накапливаясь на внутренней поверхности лампы. Вместе с этим на концах колбы из стекла образуется темный слой, говорящий о том, что в ближайшее время лампа перегорит.

Как узнать, работоспособна ли вольфрамовая нить? Для этого, нужно взять стандартный тестер, с помощь которого возможно замерить сопротивление проводника и дотронуться его клеймами до выводных контактов лампы.

Если мультиметр отражает сопротивление примерно 10 Ом, то это лучше всех слов сигнализирует нам, о том, что нить работоспособна.

Если же прибор показывает абсолютный 0, то эта лампа обладает обрывом спирали, вследствие чего не загорается.

Разрыв нити случается из-за того, что с течением времени спираль становится тоньше и потихоньку нарастает напряжение, идущее по ней. В связи с увеличением напряжения в первую очередь ломается стартер – это заметно по свойственному «мерцанию» ламп. После смены вышедших из строя ламп и стартеров конструкция обязана функционировать как часы.

Если при включении люминесцентных ламп слышны не характерные шумы или чувствуется смрад гари, необходимо срочно отключить осветительный прибор и изучить дееспособность всех его узлов. Есть вариант того, что контактные зоны ослабли, и происходит нагревание подсоединенных кабелей. Помимо того, если низкокачественно произведен дроссель, возможно замыкание обмоток с последующей поломкой люминесцентных ламп.

Порядок последовательного подключения двух ламп

К одному дросселю можно подключить 2 лампы, понадобится такое же количество стартеров.

Работа выполняется в такой очередности:

  1. На каждую лампочку параллельно подключают стартер. Они вставляются в штыревые гнезда на корпусе светильника.
  2. К свободным контактам присоединяют сетевой провод. Способ последовательный, через дроссель.
  3. Конденсатор включают параллельно на фазный и нулевой провод. Можно обойтись без него, но качество освещения будет хуже.

Важно использовать хороший выключатель. Дешевый с плохими контактами

Они быстро подгорают и залипают через повышенный ток при включении светильника. Поэтому для люминесцентных ламп требуются качественные электромеханические приборы.

Советы по подключению ламп дневного света

Люминесцентные потолочные светильники используются в производственных помещениях, офисах, жилых домах. Они бывают одно-, двух- и четырехламповые, встроенные и накладные.

Конструкция 4 лампового светильника – это два двухламповых, соединенных параллельно, попарное соединение последовательное. Одна из лампочек оснащается фазосдвигающим конденсатором, предотвращающим мерцание. При необходимости дроссель можно заменить ЭПРА. Порядок соединения указан на корпусе блока.

Для компактных моделей не нужны ни дроссели, ни стартеры, так как они встроены в цоколь. По удобству использования они такие же, как лампочки накаливания.

Если используется дроссель, его мощность должна быть такая же, как у лампы. Для самостоятельного подключения лучше приобрести ЭПРА. Думать о том, как подключить люминесцентную лампу, будет не нужно. На корпусе имеется подробная схема соединения, что снижает вероятность ошибки. Дополнительное преимущество этого варианта – отсутствие мерцания.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Классификация электронных пускателей (ЭПРА и ЭмПРА)

Люминесцентные светильники обладают рядом существенных преимуществ перед обычными осветительными приборами с лампами накаливания: они служат намного дольше, энергоэкономичны и высокоэффективны. Однако, и у таких светильников имеются свои недостатки: высокий уровень пускового тока, жужжание при работе и довольно-таки частый вывод из строя пускорегулирующей аппаратуры (стартеров).

В последнее время люминесцентные светильники подключают через специальные пускатели, которые разделяются на несколько типов:

  • Электромагнитные (ЭмПРА)
  • Электронные (ЭПРА)

Последние из списка устройства являются намного эффективными, экономичными и безопасными по сравнению с электромагнитными.

Также, в процессе работы на стройке мне часто приходилось подключать светильники с электронным балластом, что не вызывало у меня никаких трудностей, поскольку схема соединения всегда была нанесена на самом пускателе. Поэтому, в случае чего всегда можно было свериться с данным техническим рисунком и устранить неисправность.

Варианты подключений

Бездроссельное включение

Схема бездроссельного подключения ЛДС

Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера (схема подключения на рисунке). Он предусматривает использование умножителей напряжения.

Подача напряжения происходит после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы. С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В. По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т. е. необходимо просто развернуть реанимированную перегоревшую ЛЛ.

Подключение люминесцентных ламп без стартера

Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.

Существуют ЛДС, которые изначально предусмотрены для подключения без стартера. На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит. Происходит это по причине необходимости большего времени на разогрев спиралей таких ЛЛ. Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание дросселя или стартера (схема соединения ниже).

Схема бесстартерного подключения ЛДС

Конструкция и принцип работы люминесцентных ламп

Почему же такой источник вообще нашел своего покупателя? Главная причина кроется в возможности использования специальных энергосберегающих ламп, которые вставляются в патроны, а соединения с проводами происходят благодаря зажимам, выполненным целиком из бронзы.

Давайте рассмотрим устройство люминесцентных светильников. Лампа представляет собой несколько стеклянных трубок, которые наполнены инертным газом, чаще всего аргоном. Концы трубок запаяны.

Когда на патроны, в которых закреплена трубка, приходит напряжение, между двумя электродами происходит дуговой разряд. Именно этот разряд вызывает ультрафиолетовое свечение. Затем это излучение поглощается любым люминофором и преобразуется в еще одно свечение, которое уже заметно человеческому взгляду.

На цвет свечения прежде всего влияет тип люминофора. Светильники бывают открытого и закрытого (с плафоном) типов. Решетка бывает белой, зеркальной или матовой. Основные элементы светильника:

  • корпус;
  • отражатель;
  • рассеиватель. Люминесцентные светильники с рассеивателем были очень популярны из-за своей невысокой цены.

Для правильной работы недостаточно просто соединить корпус и лампу. Нужна так называемая пускорегулирующая установка. В прошлом лампы имели дроссель, по-умному назывался электромагнитной пускорегулирующей установкой. Именно она при работе издавала неприятный шум и в целом увеличивала габариты самой лампы. Именно из-за нее такой вид освещения был не сильно популярен среди обычных потребителей.

Время идет, технологии совершенствуются, поэтому у современных люминесцентных ламп такого недостатка уже нет. На смену магнитной пришла электронная пускорегулирующая установка. С помощью нее подобные лампы можно встраивать даже в систему «Умный дом».

Теперь предлагаю разобраться для чего подходят люминесцентные светильники больше всего. В большом помещении, например, на складе, очень дорого и не эффективно использовать лампы накаливания или светодиодные лампы. А люминесцентные светильники сочетают в себе небольшое энергопотребление и хорошую мощность. Именно поэтому они широко применяются для освещения цехов, складов, подъездов. А также используются при создании аварийных световых систем.

Как правильно подключить

Подключение люминесцентных ламп проводится с помощью различных вариантов. С использованием дросселя, с балластом, со стартером или без него. Далее в статье приведено подробное описание каждого способа.

С дросселем и без него

Люминесцентную установку нельзя просто зажечь — ей необходимо наличие зажигателя и токоотвод. В небольших изделиях фабрики все эти нюансы учитывают и встраивают в корпус и покупателю нужно только лишь вкрутить лампочку в подходящий плафон светильника/торшера и нажать выключатель.

А для более крупных лампочек необходима пускорегулирующая установка, которая может быть как электромеханическая, так и электронная.

Для правильного подсоединения и бесперебойной работы лампочки нужно знать схему.

Здесь рассматривается поэтапное подключение двух трубчатых люминесцентных ламп к сети с применением стартерной установки. Для работы необходимо иметь два стартера, дроссель, вид которого должен непременно соответствовать виду лампы.

А также необходимо помнить о суммарной мощности пускового аппарата, она не должна быть выше, чем у дросселя.

При включении питающего кабеля к лампочке необходимо помнить, что в роли ограничителя тока будет дроссель.

Поэтому, фазную жилу нужно подключать через него, а на изделие подключить нулевой кабель.

Данная схема подключения подходит для крупных осветительных ламп. А более меньшие модели оснащены вмонтированным устройством запуска и регулировки — портативным ЭПРА, который расположен в корпусе.

Подключение без использования дросселя

Такой вариант подключения будет более тяжелым, и не подойдет для новичка.

Для работы можно использовать диодный мост с несколькими конденсаторами и подсоединенная последовательно в цепь в роли балласта, лампа накаливания.

Основной плюс этого подключения в том, что можно включить не только обычную лампу без дросселя, но и испорченную, в которой нет спиралей.

Для изделий мощностью 18 ватт необходимо брать следующие элементы:

  • диодный мост GBU405;
  • конденсатор 2NF (до 1 кв)
  • конденсатор 3NF (до 1 кв)
  • люминесцентная лампа 50 Вт

Для трубок большей мощности нужно увеличить объем конденсатора. После всего схема подключается к дневному освещению.

С электронным балластом

Провести работу по подключению с применением ЭПРА для люминесцентных изделий легко произвести, если человек имеет базовые навыки работы с электрикой. Фактически, в изделии будет находиться сам блок, элемент проводов и лампы дневного освещения.

Для начала необходимо выбрать в корпусе лампы удобное место для подключения электронного блока управления, полагаясь на практичную расстановку клемм, которые находятся на корпусе.

Зафиксировать его с корпусом с помощью саморезов простым шуруповёртом. Соединить блок управления с изделием и клеммой подключения.

Программа подключения двух люминесцентных изделий такая же, только они включаются последовательно, поэтому мощность блока управления должна быть больше. По такой же схеме можно подключить три и более лампочки.

После завершения работы, необходимо убедиться в верности подключения всех проводов, и только потом крепить светильник на место. Проверив вольтметром отсутствие напряжения в электросети, подсоединить светильник к электрической проводке.

В завершении нужно включить напряжение, чтобы проверить работы люминесцентной лампы. Если все было произведено правильно, то это будет заметно сразу.

Лампы сразу включатся, не нужно ждать пока они разогреются, а также они перестанут издавать шум, исчезнет мерцание, а яркость будет гораздо выше.

Если человек не уверен в своей способности, то лучше вызвать специалиста для этой работы.

Со стартером

Схему подключения люминесцентной лампы со стартером будет выполнить проще всего. Здесь для примера будет взята лампочка на 40 Вт. Дроссель должен быть с такой же мощностью, а для стартера будет достаточно 60 Вт.

Пошаговое подключение по схеме:

  • параллельно установить стартер к выступающим боковым контактам на краях люминесцентной лампочки. Эти контакты похожи на куски нитей накаливания вакуумной колбы;
  • теперь на контакты необходимо начать подсоединять дроссель;
  • к этим контактам подсоединить конденсатор, непоследовательно, а параллельно. Из-за этого конденсатору будет возмещаться реактивная мощность и уменьшаться помехи в электросети.

Такую простую схему может осуществить любой человек, но перед тем, как включаться лампочку, нужно замерить напряжение в сети. Включать светильник только после теста мультиметром.

Как подключить лампу

Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.

Подключение с использованием электромагнитного балласта

Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.

Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.

Подключение при помощи ЭмПРА.

Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:

  • значительный расход электроэнергии;
  • длительный запуск, который может занимать 3 с;
  • схема не способна функционировать в условиях пониженных температур;
  • нежелательное стробоскопическое мигание, негативно влияющее на зрение;
  • дроссельные пластинки по мере износа могут издавать гудение.

Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.

Две трубки и два дросселя

В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.

Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.

Схема с двумя трубками и двумя дросселями.

От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.

Схема подключения двух ламп от одного дросселя

Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.

Схема подключения двух светильников от одного дросселя.

Электронный балласт

Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.

Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.

Подключение с помощью электронного балласта.

Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.

Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.

Использование умножителей напряжения

Использование умножителей напряжения.

Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.

Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для  его стабилизации используются конденсаторы.

Тематическое видео: Подробно про умножитель напряжения

Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость

Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.

Подключение без стартера

Схема подключения без стартера.

Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.

В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.

Как устроена и работает ЛДС

Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.

Схема люминесцентной лампы

Все это ЛДС, работающие на одном принципе.

Для нормальной работы люминесцентного светильника необходимо выполнить два условия:

  1. Обеспечить начальный пробой межэлектродного промежутка (запуск).
  2. Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).

Пуск лампы

В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.

До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.

Стартеры для пуска ЛДС на различные напряжения

Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.

Поддержание рабочего режима

Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:

  1. Электромагнитные (дроссельные).
  2. Электронные.

Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.

Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.

Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:

Электронное пускорегулирующее устройство для люминесцентной лампы

Устройство лампы

Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.

Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.

Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.

Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У стартовые токи большие, и контакты могут залипать

Замена люминесцентных ламп

Чтобы снять люминесцентную лампу, необходимо повернуть в том направлении, которое указано на держателе

Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.

Выполнить замену можно следующим образом:

Разобрать светильник

Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении

Оно указывается на держателе стрелками.
После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.

Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.

Подключение без стартера

Схема ЭПРА в своем составе стартера не имеет изначально.

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.

Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания. Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами

Один из них показан ниже

Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

На схеме представлен двухполупериодный диодный умножитель напряжения.

Электроды закорачиваются, к ним подключается однопроводная линия. Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.

Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройства с перегоревшими спиралями электродов.

Подключение через современный электронный балласт

Подключение источника света с электронным балластом

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины: 1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений. 2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов. Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы

При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность

Рис. 4 Принципиальная схема запуска ЛДС без стартера Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит. Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1. Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6. Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий