Определение желаемой температуры в комнатах
Итоговый показатель температуры пола зависит от того, с какой целью используется комната. Например:
- +29-30 градусов – холлы, прихожие;
- +27-29 – кабинеты, комнаты жилые;
- +30-35 – полы возле окон, на верандах;
- +32 – ванные, санузлы;
- +17-19 – спортивные залы.
Монтаж водяного теплого пола
При этом температура теплоносителя не должна быть менее +40 градусов или превышать +60. Система подогрева должна быть такой, чтобы разница между температурными показателями прямой и обратной труб в случае с водяными полами не превышала 15 градусов. Иначе основание будет прогрето абсолютно неравномерно.
Баланс тепловых/гидравлических нагрузок для водяного пола должен быть также оптимален и выверен. Поэтому нагревательные контуры должны иметь определенную длину в соответствии с диаметром. Оптимальный вариант трубы – 18 мм, так как даже при небольшом количестве воды такой трубопровод будет правильно работать и обогревать основание.
Пример приблизительного расчёта
Рассмотрим на простом примере, как рассчитать обогреваемую площадь и мощность электрического пола на кухне, которая располагается на первом этаже. Пол будет использоваться в качестве дополнительного источника тепла. Площадь помещения равна 10 м2. Из нее требуется вычесть площади, занимаемые холодильником и мебелью – 0,36 м2 и 2,4 м2. От стен при прокладке контура стоит отступить примерно на 5-10 см – это составит около 0,5 м2. Таким образом, получаем 10 – 0,36 – 2,4 – 0,5 = 6,7 м2. Это значение равно той площади пола, под которой будет обустроен электрообогрев. Для кухни, расположенной на первом этаже (то есть снизу помещения находится холодный подвал), при условии дополнительного обогрева достаточной будет мощность пола 140 Вт/м2. Теперь требуется умножить площадь обогреваемого пола 6,7 м2 на 140 Вт/м2. Получается, что мощность нагревательной системы должна быть 930 Вт.
Расчет теплого пола своими руками
Выбор оптимального способа укладки
В больших помещениях (холлы, гостиные), идеальным вариант укладки трубопровода является «улитка», она способна равномерно прогревать площадь любого размера. Укладка «змейкой» возможна, однако пол в одной зоне будет горячей, чем в другой.
Для маленьких комнат вполне подойдёт «змейка», ведь на небольшой поверхности разница температур сотрётся и не будет заметна. Этот способ также отлично подходит для помещений со сложной планировкой. Кроме того, расположение вдоль наружных стен контура «змейкой», позволит отсечь холод идущий с улицы.
Идеально подходит данный вариант для помещений с разными зонами. В каждой зоне можно укладывать контур по наиболее подходящей схеме, для создания оптимального микроклимата.
«Угловая змейка» плохо прогревает помещение, её рекомендовано использовать с комбинированным способом, она будет идеально отапливать углы.
Греющие маты можно уложить в любом помещении, даже самой сложной конфигурации
Очевидно, что выбор и расчет греющего мата для отопления пола гораздо проще, чем резистивного кабеля. Для выбора тактики правильной укладки поможет план на миллиметровой бумаге. Здесь как нельзя лучше подходит пословица: «Семь раз отмерь и один раз отрежь!»
Особенности расчетов инфракрасных пленочных полов
Пленочные теплые полы имеют ряд особенностей, которые требуют грамотного подхода.
- Во-первых, они, как и резистивный кабель должны укладываться только на свободном от мебели месте.
- Во-вторых, минимальная дистанция от пленки до краев (стен или стационарной мебели) должна составлять 20 см.
- В-третьих, пленочные полы могут укладываться только «сухим» способом под подходящие для этого покрытия (ламинат, линолеум, ковролин). Хоть и существуют технологии укладки плитки на пленочные полы, но это предполагает наличие промежуточного гидроизолирующего слоя. В итоге стоимость теплого пола с ИК пленками будет гораздо выше, чем с резистивными кабелями или матами.
- В-четвертых, пленочные полы могут резаться с определенной кратностью – чаще всего 25 см. Это не повлияет на удельную мощность.
- И, наконец, кажущаяся легкость расчета и особенно монтажа пленочного пола обманчива. Под поверхностью ИК пола находится масса электрических соединений, которые требуют только высококвалифицированного монтажа.
Видео: Квалифицированный монтаж пленочного инфракрасного пола
Для правильного расчета пленочного пола необходимо выполнить ряд шагов:
- Рассчитывается площадь обогрева помещения. Для этого на листе миллиметровой бумаги вычерчивается план, «расставляется» стационарная мебель и учитываются минимальные 20 см отступы от границ. В итоге должна получиться обогреваемая площадь — Sу. допустим, что в конкретном примере Sу=15 м2, а общая площадь 24
- Высчитывается доля обогреваемой площади в общей площади помещения: Sу*100%/Sобщ=15 м2*100%/24 м2=62,5%. Если этот показатель более 60% (как в нашем случае), то удельная мощность обогревательных ИК пленок может быть от 160 до 220 Вт/м2. Если же доля обогреваемой площади менее 60%, то Pуд=220 Вт/м2. Для нашего случая выбираем Pуд=160 Вт/м2.
- Для помещений, имеющих большие теплопотери через пол: первые этажи, помещения над арками, дома старой застройки с полами без теплоизоляции, — в любом случае Pуд=220 Вт/м2.
- Рассчитывается установленная мощность теплого пола. Для этого удельную мощность перемножают с обогреваемой площадью: Pуст=Pуд* Sу=160 Вт/м2*15 м2=2400 Вт.
- Из ассортимента любого производителя ИК пленок выбираются с заданной удельной мощностью нужной длины и ширины, которые могут покрыть полностью всю обогреваемую площадь. Нужно учесть, что ширина рулонов пленок 50, 80 и 100 см, а кратность резки пленки – через каждые 25 см. При этом существуют ограничения, представленные в таблице. При этом лучше не выбирать максимальную длину, а набирать меньшими отрезками. Главное правило — меньшее количество отдельных пленок (план на миллиметровой бумаге будет большим подспорьем).
Нагревательные маты очень удобны в расчетах и монтаже
Основными характеристиками нагревательных матов являются:
- Напряжение питания, которое обычно составляет 220/230 В и мощность нагревательного мата.
- Длина мата и рекомендуемая площадь укладки, обычно от 0,5 м2 до 12 м2 при длине от 1 до 24 м.
- Один из главных показателей – удельная мощность, то есть, какое количество тепла генерирует нагревательный мат на 1 метр квадратный. Измеряется она в Вт/м2 (Ваттах на метр квадратный). Для теплого пола обычно выпускаются маты с удельной мощностью 100—150 Вт/м2, очень редко 200 Вт/м2.
Саморегулирующийся нагревательный кабель
Основным недостатком резистивных кабелей и нагревательных матов на их основе является необходимость постоянного теплоотвода от них, так как от температуры окружающей среды практически не зависит их сопротивление и соответственно количество генерируемого тепла. Если от кабеля не отвести тепло, то он перегреется и выйдет из строя. Именно поэтому теплые полы резистивными кабелями нельзя оборудовать под стационарно стоящей мебелью без ножек.
Схема прямого подключения
У вас есть котел, после которого смонтирована вся арматура безопасности + циркуляционный насос. В некоторых настенных вариантах котлов, насос идет изначально встроенным в его корпус.
Для напольных экземпляров придется ставить его отдельно. От этого котла, вода сначала направляется в распределительный коллектор, и далее разбегается по петлям. После чего завершив проход, возвращается через обратку в теплогенератор.
Спецификация материалов и оборудования на примере Valtec
При такой схеме, котел непосредственно настраивается на желаемую температуру самих ТП. У вас тут нет никаких дополнительных батарей отопления или радиаторов.
На какие главные особенности здесь стоит обратить внимание? Во-первых, при таком прямом подключении, желательно устанавливать конденсационный котел
В таких схемах, работа при относительно невысоких температурах для конденсационника вполне оптимальна. В этом режиме он достигнет своего наибольшего КПД.
Если же вы будете использовать обычный газовый котел, то в скором времени попрощаетесь со своим теплообменником.
Второй нюанс касается твердотопливных котлов. Когда у вас смонтирован именно он, для прямого подключения к теплым полам, вам потребуется еще и буферная емкость.
Она нужна для ограничения температурного режима. Твердотопливными котлами напрямую очень тяжело регулировать температуру.
Укладка кабельного теплого пола
Вначале рассмотрим, как монтируется кабельная система, которая, к стати, может использоваться и для обогрева кровли и водостоков в доме.
После обработки поверхности грунтовкой, производится предварительная разметка с учетом всех отступов и расстояний между кабелями и мест, где он не будет располагаться.
Также следует правильно определиться с укладкой, чтобы монтажные концы кабеля выходили к месту установки регулятора.
Затем для лучшей теплоотдачи вся поверхность пола покрывается теплоизолирующим слоем
При этом важно правильно выбрать его толщину
Если под комнатой располагается другая жилая отапливаемая комната, то будет достаточно термослоя толщиной 3-4 мм.
Если снизу комната не отапливаемая – термоизоляционный слой нужен толще.
После укладки термоизоляционного слоя на его поверхности закрепляются монтажные алюминиевые ленты кабеля.
Эти ленты устанавливаются на поверхности с расстоянием в 1 метр между собой. При этом они должны располагаться перпендикулярно основному направлению кабеля.
Крепление лент производить лучше дюбелями.
Закончив с установкой монтажных лент, приступают к укладке самого кабеля.
Первым делом протягивают монтажный конец кабеля к месту расположения регулятора и закрепляют его фиксаторами монтажной ленты.
После укладывают остальной кабель с закреплением его на ленте и соблюдением расстояния между отрезками кабеля, а также стенами.
Далее производится установка терморегулятора в посадочное место, подключение к нему монтажных концов кабеля, подсоединение его к электрической сети дома.
Затем переходят к укладке датчика температуры.
Для предотвращения возможного повреждения, его лучше поместить в гофрированную пластиковую трубку, при этом со стороны положения датчика закрыть ее пробкой.
Датчик, защищенный гофрой укладывается на пол, строго по центру между двумя отрезками кабеля.
После этого проделанные штробы с вложенными в них кабелями заделываются алебастром.
На этом этапе можно провести пробный запуск системы.
Установив минимальную температуру на терморегуляторе, а затем с постепенным ее повышением проверить работоспособность.
Если все нормально, можно приступать к завершающим работам.
Чтобы защитить кабель от возможных повреждений, на поверхность основной стяжки, с уже уложенной системой, наносится дополнительная цементно-песчаная стяжка.
Но толщина ее не должна быть большой – 3-4 см. Такая стяжка полностью закроет собой кабель, защищая его от повреждений.
После на высохшую стяжку наноситься напольное покрытие.
Теплый кабельный пол в разрезе.
Как делают в деревянном доме.
Обоснованность применения теплоизоляции
Утепление конструктивных элементов здания в дальнейшем будет сильно влиять на комфорт в помещениях и значительно снизит расходы на отопление. И одним из главных является утепление конструкции пола. Электрические теплые полы могут монтироваться непосредственно под напольное покрытие как с применением различных тонких утеплителей, так и без них, что является чаще всего вынужденной мерой – когда невозможно пожертвовать высотой помещения.
Потери тепла через какую-либо ограждающую конструкцию происходят тем интенсивнее, чем больше разница температур и меньше термическое сопротивление. Даже если в соседних помещениях между этажами будут одинаковые температуры, тепло все равно неизбежно будет передаваться бетонной плите пола. Поэтому, если есть возможность, то надо использовать утеплители и чем они толще – тем лучше.
Если система электрический теплый пол будет использоваться как основное отопление в виде термоаккумулирующего пола, то применение утеплителей обязательно, так как мощностей нагревательных кабелей и матов будет просто недостаточно для компенсации теплопотерь.
Калькулятор расчета водяного теплого пола
Онлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы.
Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.
При завышении предельно допустимых значений основных параметров, калькулятор укажет на ошибки.
Тепловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.
Правильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.
Система теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.
Полученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.
Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!
- Общий тепловой поток
— Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.
Тепловой поток по направлению вверх
— Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.
Тепловой поток по направлению вниз
— Кол-во «теряемого» тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).
Суммарный удельный тепловой поток
— Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра.
Суммарный тепловой поток на погонный метр
— Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы.
Средняя температура теплоносителя
— Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.
Максимальная температура пола
— Максимальная температура поверхности пола по оси нагревательного элемента.
Минимальная температура пола
— Минимальная температура поверхности пола по оси между трубами ТП.
Средняя температура пола
— Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.
Длина трубы
— Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.
Тепловая нагрузка на трубу
— Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.
Расход теплоносителя
— Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.
Скорость движения теплоносителя
— Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.
Линейные потери давления
— Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.
Общий объем теплоносителя
— Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.
Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018
Без терморегулятора немыслима работа электрического теплого пола
- Каждый производитель любой системы теплых полов всегда рекомендует определенные модели терморегуляторов и работающих с ними датчиков. Лучше этими рекомендациями не пренебрегать.
- Все терморегуляторы могут работать только с определенным током нагрузки: 10 A– для обогревателей с установленной мощностью до 2300 Вт, и 16 Aс Pуст≥2300 Вт. Именно по этим показателям прежде всего и надо выбирать терморегулятор.
- Если планируется использовать систему теплый пол только для комфорта, то нужно выбирать терморегулятор с датчиком температуры пола.
- Если теплый пол используется в целях полного отопления, то необходимо использовать терморегулятор с датчиком температуры воздуха или с комбинацией датчиков температуры пола и воздуха.
- Для работы систем отопления с деревянным покрытием обязательно использовать терморегуляторы с комбинацией датчиков температуры воздуха и пола.
- Если в близлежащих помещениях тоже планируется система электрических теплых полов, то целесообразно использовать многозональный терморегулятор с выносными датчиками.
Общие правила проектирования электропроводки теплого пола
При проектировании электропроводки теплого пола следует обязательно учесть несколько правил:
- Все соединения кабелей системы теплый пол между собой и с электропроводкой должны выполняться только на специальных клеммах, на контактах терморегуляторов, в распределительных коробках и электрических щитах. Следует избегать любых соединений в конструкции пола кроме тех, что неизбежны, и рекомендованы производителем.
- Экраны нагревательных кабелей и матов должны соединяться с проводом защитного заземления (PE) и должны быть включены в общую систему уравнивания потенциалов – СУП.
- Питающие провода и кабели должны быть площадью поперечного сечения не меньше, чем подводящие «холодные» концы нагревателей теплого пола. При установленной мощности до 2300 Вт площадь поперечного сечения медного провода должна быть 1,5 мм2, а свыше 2300 Вт – 2,5 мм2.
- Для защиты человека от поражения электрическим током обязательно применение устройств защитного отключения (УЗО) с дифференциальным током срабатывания не более 30 мА, а для санузлов – 10 мА. Не менее 1 раза в месяц необходимо проводить испытание УЗО.
Популярные схемы укладки труб и их особенности
К основным схемам укладки труб с теплоносителем относят «змейку» и «спираль», а также часто применяются другие варианты укладки на их основе, например, «змейка» без краевых зон.
Распространенные методы укладки
«Змейка» удобный вариант, который легко укладывается в небольшом по площади помещении, однако прогрев труб в этом случае происходит неравномерно. Поэтому вдоль стены, характеризующейся большими теплопотерями, укладывают трубы, которые расположены ближе к коллектору (в начале) и лучше прогреваются.
Шаг укладки труб по этой схеме не должен быть больше 30 см, в противном случае напольное покрытие будет иметь неравномерную температуру – тепло будет ощущаться над трубами, а холод между ними. Расстояние между крайними трубами делают 20 см и меньше.
«Змейка» и «спираль» – оптимальные способы формирования контура
Схема «спираль» отличается таким способом укладке, при котором подающую и обратную трубу располагают параллельно друг другу. За счет этого решается вопрос неравномерного прогрева пола, и температура над обеими трубами имеет примерно равное значение.
Варианты укладки
Спиральный тип укладки наиболее актуален для больших помещений, при этом расстояние между трубами составляет 20 см.
Резистивные кабели — просты, надежны и неприхотливы
Основными характеристиками резистивных кабелей являются:
Конструкция кабеля (одножильный, двухжильный, зональный) и его назначение. Напряжение питания и мощность. Обычно производители указывают два напряжения питания 220/230 вольт и соответствующую им мощность в Ваттах, например, греющий кабель deviflex DTIP−18, длиной в 22 метра имеет мощность 360/395 Ватт соответственно
Очень важной характеристикой греющих кабелей является погонная мощность, то есть, сколько Ватт излучается одним метром. В вышеприведенном примере кабеля погонная мощность составляет 18 Вт/м при напряжении питания 230 В
Этот показатель указан в маркировке кабеля, но его можно и вычислить. Если мощность в 395 Вт поделить на длину в 22 метра, то получается 395/22=17,95 Вт/м.
Резистивные кабели производятся разной длины (7—220 м), различной погонной и общей мощностью, что вполне может удовлетворить все потребности. Естественно, что кабель надо укладывать по особой схеме, для охвата всей площади помещения, но об этом будет подробно рассказано в последующих разделах.
Нагревательные маты
Для удобства укладки были изобретены нагревательные маты, где греющий резистивный кабель вплетен в полимерную сетку и уже уложен с нужным шагом. Сетка обычно имеет клеевую основу и может приклеиваться к поверхности пола, что только добавляет удобства при монтаже. Особенно это хорошо при укладке плитки, когда маты скрываются прямо в слое плиточного клея или при ремонте, если делают только самовыравнивающую тонкую стяжку, на которую можно впоследствии настелить ламинат или ковролин. Большинство греющих матов выпускается шириной в 45 см и разной длины, что позволяет выбрать конкретную модель для любого помещения. При этом не стоит забывать, что в основе матов лежит резистивный, обычно двухжильный, кабель, поэтому отрезать маты по проводникам строго запрещено!
Устройство стяжки
До заливки бетонного раствора следует очистить поверхность пола от строительного мусора, грязи и пыли, чтобы раствор не отслоился от снования после затвердевания. При устройстве стяжки на старом непрочном основании рекомендуется использование упрочняющих грунтовок. Под кабелем не должны находиться острые выступающие предметы, которые могут его повредить.
При устройстве тонкого тёплого пола (под керамическую или кафельную плитку) для заливки нагревательного кабеля можно использовать клей для плитки.
Для приготовления цементно-песчаного раствора для толстых стяжек рекомендуется использовать следующий состав (в объёмных частях):
- Цемент ПЦ-400 — 1 часть;
- Песок — 4 части;
- Щебень мелкий — 5 частей;
- Вода — 0,6;
- Пластификатор (например, С-3) — 1 % от веса цемента.
Большое значение имеет количество воды, чем оно больше, тем сильней усадка и выше вероятность образования трещин. Составы без пластификаторов нежелательно использовать по той же причине. Отсутствие щебня в составе также повышает вероятность растрескивания. Рекомендуется использование самовыравнивающихся растворов.
Использование легкого заполнителя (керамзита, перлита) для бетонной стяжки тёплого пола недопустимо. Это приведёт к нарушению теплообмена и будет способствовать перегреву электрического кабеля. Во избежание образования участков локального перегрева необходимо при заливке тщательно утрамбовывать раствор, чтобы не образовывались полости вокруг кабеля.
После заливки раствора, для предотвращения быстрого высыхания, следует накрыть стяжку полиэтиленовой плёнкой. При комнатной температуре стяжка должна быть выдержана до включения системы не менее 28 дней.
Подбор компонентов системы обогрева
Основным элементом теплого пола является кабель, выбор которого и определяет трассу прокладки и мощность системы.
Резистивный кабель
Внешне он не отличим от обычного, но имеет совершенно другие характеристики. Если для сердцевины обычного электрического кабеля производители выбирают материал с наименьшим сопротивлением для того, чтобы сократить потери энергии на его преодоление, то при изготовлении нагревательного кабеля поступают как раз наоборот. Чаще всего сердцевина кабеля выполнена из нихрома, обладающего очень высоким сопротивлением.
Нагревательный резистивный кабель
Решающим в выборе кабеля становится значение его погонной мощности (удельного тепловыделения). Для бытового применения этот показатель колеблется от 15 до 21 Вт/м. При выборе кабеля помните, что расстояние между витками при укладке не должно быть меньше 5–6 см – это чревато перегревом, и больше 10-12 см – иначе на полу будут чувствоваться перепады температуры. Исходя из этих значений и следует выбирать погонную мощность кабеля. То есть, при расстоянии между витками в 10 см, на 1 м2 вам потребуется 9 метров кабеля. При необходимой удельной мощности системы 140 Вт/м2 расчет будет выглядеть следующим образом:
140:9=15,6 Вт/м.
В то же время при укладке участков кабеля на расстоянии 5 см друг от друга, расчет будет выглядеть вот так:
100 см (1 м): 5 (расстояние между участками провода) = 20 м – необходимая длина провода.
140 Вт/м2: 20 = 7 Вт/м – необходимая погонная мощность кабеля.
Саморегулирующийся кабель
Это двужильный кабель, обе жилы которого выполнены из материала с низким сопротивлением. Роль нагревательного элемента здесь выполняет полупроводниковая полимерная матрица. Именно свойства полупроводника и позволяют такой матрице осуществлять функцию саморегуляции.
Саморегулирующийся кабель для теплого пола
Применение этого кабеля исключает возможность местного перегрева и позволяет его укладку под такие покрытия, как ламинат и паркетная доска. Учитывать расположение мебели тоже не нужно. Так что такой кабель идеален для любителей частой смены интерьера. Единственным недостатком саморегулирующейся системы является достаточно высокая цена.
Нагревательные маты
Нагревательные маты по сути — тот же резистивный кабель, только уже уложенный змейкой и прикрепленный к полимерной сетке.
Нагревательные маты позволяют намного ускорить процесс монтажа
Таким образом, значительно облегчается укладка электрического теплого пола, но возрастает его цена. Стоимость матов в среднем на 20-50% выше, чем цена сопоставимого по качеству кабеля.
Выбор термостата
Термостат не менее важная деталь системы теплого пола, чем нагревательный кабель. Непрограммируемые термостаты необходимо включать вручную. Регулировка такого прибора может быть как ступенчатой, так и резисторной (плавной).
Непрограммируемый и программируемый терморегулятор
Программируемые термостаты значительно более сложные устройства, позволяющие поддерживать в комнате постоянную температуру. Некоторые из них оснащены таймерами, которые включают и выключают систему в определенное время.
Выбор теплоизоляции
Чтобы тепло не тратилось на обогрев подвала или перекрытий под кабель необходимо уложить слой изолирующего материала. Существует два способа сделать это, каждый из которых имеет своих противников и сторонников. Первый способ подразумевает использование экструдированного пенополистирола толщиной около 30 мм. Противники этого способа утверждают, что настолько поднимать пол не имеет смысла и советуют использовать фольгоизол. На что сторонники ЭППС говорят, что в щелочной среде цементной стяжки через несколько лет фольгоизол разрушится, что приведет к дополнительным теплопотерям.
Для тех, кто решил монтировать теплый пол самостоятельно, но опасается ошибок в подборе подходящих друг другу деталей, существуют уже готовые наборы, включающие кабель, термостат, трубку для установки датчика под поверхностью пола и подробную инструкцию по монтажу.