Облицовочный кирпич это эффектный внешний вид и сохранение тепла

Пористая керамика

Сравнительно новый строительный материал. Пустотелый кирпич отличается от полнотелого собрата меньшей материалоемкостью в производстве, меньшим удельным весом (как следствие – уменьшение затрат на погрузочно-разгрузочные работы и удобство кладки) и меньшей теплопроводностью.

Худшая теплопроводность пустотелого кирпича является следствием наличия воздушных карманов (теплопроводность воздуха ничтожна и составляет в среднем 0,024 Вт/(м∙К)). В зависимости от марки кирпича и качества изготовления показатель варьируется в пределах от 0,42 до 0,468 Вт/(м∙К). Надо сказать, что из-за наличия воздушных полостей кирпич теряет в прочности, однако многие в частном строительстве, когда прочность важнее тепла, просто заливают все поры жидким бетоном.

Виды кирпича

Кирпичный фасад зданий может выполняться из разных видов материала. Основное требование – чтобы облицовка была прочной. Поэтому выбирая материал, стоит для начала внимательно ознакомиться с его видами и свойствами.

Для облицовки внешних стен строений можно применять следующий материал:

  • силикатного типа;
  • клинкерного вида;
  • гиперпрессованного типа;
  • керамического вида.

ГиперпрессованныйКерамическийКлинкерныйСиликатный

Силикатный

Данный тип кирпича считается простым и бюджетным строительным вариантом для облицовки строений. Но, несмотря на это он обладает целым рядом достоинств:

  • этот материал обладает высокой теплоизоляцией;
  • обеспечивает высокую защиту внешних стен от деформаций, трещин, различных повреждений;
  • является отличным препятствием от воздействий влаги, атмосферных осадков;
  • выдерживает резкие перепады температурного режима;
  • установка этого материала простая, поэтому с ней сможет справиться даже новичок в этом деле;
  • распространенность — этот материал возможно приобрести в строительном магазине.

Клинкерный

По своим свойствам этот материал сходен с классическим кирпичом. Он обладает низкой стоимостью и также подходит для облицовки фасада. Помимо этого, он обладает целым рядом положительных особенностей:

  • клинкерный кирпич имеет высокую прочность;
  • долговечность — этот материал имеет срок службы от 50 до 100 лет;
  • обладает уникальным составом — для изготовления этого материала применяется глина с определенной структурой, она подвергается обжигу при температуре почти 1200 градусов Цельсия. В процессе данного обжига наблюдается спекание элементов внутри структуры кирпича;
  • выпускается с разной фактурой;
  • в продаже можно встретить кирпич клинкерного типа с различными расцветками.

Гиперпресованный

Данный материал производится из ракушечника с добавление измельченного известняка. Он идеально подходит для установки на внешние стены строений.

Основные особенности этого материала:

  • высокая прочность — ее степень составляет почти 150-300 кг/см2;
  • обладает низким уровнем водопоглощения, почти 6 %. Это свойство предотвращает возникновение внутри дома в помещения сырости, грибковых и плесневых поражений;
  • имеет повышенный класс морозостойкости, поэтому не разрушается под воздействием сильных морозов в холодное время года
  • разнообразные формы исполнения, размерный ряд предоставляют возможность создавать фасады с неповторимым стилем;
  • различные цветовые решений, которые придадут внешним стенам необычный, яркий внешний вид.

Керамический

Кирпич керамического типа является превосходной основой для оформления внешних стен зданий, строений, жилых домов. По своему составу, качеству, прочности он не уступает другим типам кирпичного материала. Помимо этого, стоит выделить основные положительные характеристики этого типа кирпича:

  • кирпич керамического типа может иметь полную или, наоборот, пустотелую структуру;
  • независимо от структуры, материал имеет высокий уровень водопоглощения, поэтому в помещении не возникает сырости, грибковых поражений, плесени;
  • отлично противостоит воздействиям солнечных лучей;
  • имеет высокий уровень пожаростойкости — при воздействии открытого пламени не возгорается;
  • обладает уникальным составом — для производства этого кирпича применяется глина с высшим сортом, поэтому основа облицовки выглядит оригинально, красиво и стильно;
  • может иметь разную структуру поверхности – глазурованная (гладкая) и матовая.

Облицовочный кирпич ручной формовки

Многие любят антиквариат, предметы из прошлого выглядят величественно и роскошно. Так и в архитектуре. Современный облицовочный кирпич почти идеально ровный, гладкий. Но многим нравится обратный эффект, эффект состаренной поверхности. Но не будешь же брать кирпич с развалин. Есть спрос, будет предложение. Многие производители задались целью изготовить кирпич, отвечающий современным требованиям к плотности и теплопроводности, но, который выглядит под старину.

Еще влажный кирпич обрабатывают специальными составами и только потом отправляют в печь. Каждый кирпич и партия выходят оригинальными. Внешняя поверхность несколько неровная и имеет разные оттенки. Таким образом и достигается эффект исторического кирпича.

Теплоаккумулирующая способность материалов

Способность материала удерживать тепло оценивается его удельной теплоемкостью, т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19 кДж. Таблица 1. Сравнение некоторых теплоаккумулирующих материалов

Ма­те­ри­алПлот­ность, кг/м 3Теп­ло­ем­кость, кДж/(кг*K)Ко­эф­фи­ци­ент те­пло­про­вод­нос­ти, Вт/(м*K)Мас­са ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, кгОт­но­си­тель­ная мас­са ТАМ по от­но­ше­нию к мас­се во­ды, кг/кгОбъем ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, м 3От­но­си­тель­ный объем ТАМ по от­но­ше­нию к объему во­ды, м 3 /м 3
Гранит, галька16000,840,4559500549,6*4,2
Вода10004,20,611900111,91
Глауберова соль (декагидрат сульфата натрия)*14600 т 1300 ж1,92 т 3,26 ж1,85 т 1,714 ж33000,282,260,19
Парафин*786 т2,89 т0,498 т37500,324,770,4

Для водонагревательных установок и жидкостных систем отопления лучше всего в качестве теплоаккумулирующего материала применять воду, а для воздушных гелиосистем — гальку, гравий и т.п. Следует иметь в виду, что галечный теплоаккумулятор при одинаковой энергоемкости по сравнению с водяным теплоаккумулятором имеет в 3 раза больший объем и занимает в 1,6 раза большую площадь. Например, водяной теплоаккумулятор диаметром 1,5 м и высотой 1,4 м имеет объем 4,3 м 3 , в то время как галечный теплоаккумулятор в форме куба со стороной 2,4 м имеет объем 13,8 м 3 .

Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:

  • нефть — 11,3;
  • уголь (условное топливо) — 8,1;
  • водород — 33,6;
  • древесина — 4,2.

При термохимическом аккумулировании теплоты в цеолите (процессы адсорбции — десорбции) может аккумулироваться 286 Вт*ч/кг теплоты при разности температур 55°C. Плотность аккумулирования теплоты в твердых материалах (скальная порода, галька, гранит, бетон, кирпич) при разности температур 60°C составляет 14 17 Вт*ч/кг, а в воде — 70 Вт*ч/кг. При фазовых переходах вещества (плавление — затвердевание) плотность аккумулирования значительно выше, Вт*ч/кг:

  • лед (таяние) — 93;
  • парафин — 47;
  • гидраты солей неорганических кислот — 40 130.

Таблица 2. Сравнение удельной теплоемкости и плотности различных материалов на основе равных объемов

МатериалУдельная теплоемкость, кДж/(кг*K)Плотность, кг/м 3Теплоемкость, кДж/(м 3 *K)
Вода4,1910004187
Металлоконструкции0,4678333437
Бетон1,1322422375
Кирпич0,8422421750
Магнетит, железная руда0,6851253312
Базальт, каменная порода0,8228802250
Мрамор0,8628802375

К сожалению, лучший из приведенных в таблице 2 строительных материалов — бетон, удельная теплоемкость которого составляет 1,1 кДж/(кг*K), удерживает лишь ¼ того количества тепла, которое хранит вода того же веса. Однако плотность бетона (кг/м 3 ) значительно превышает плотность воды. Во втором столбце таблицы 2 приведены плотности этих материалов. Умножив удельную теплоемкость на плотность материала, получим теплоемкость на кубический метр. Эти величины приведены в третьем столбце таблицы 2. Следует отметить, что вода, несмотря на то, что обладает наименьшей плотностью из всех приведенных материалов, имеет теплоемкость на 1 м 3 выше (2328,8 кДж/м 3 ), чем остальные материалы таблицы, в силу ее значительно большей удельной теплоемкости. Низкая удельная теплоемкость бетона в значительной степени компенсируется его большой массой, благодаря которой он удерживает значительное количество тепла (1415,9 кДж/м 3 ).

Коэффициент теплоотдачи кирпича: общие сведения

Коэффициент теплоотдачи кирпича

Теплопроводность кирпича характеризуется способностью проводить энергию тепла. Такой «талант» принято выводить в специальном показателе. Каждый вид будет представлять свои данные в этом отношении:

  1. Клинкерный кирпич теплопроводность имеет в диапазоне от 0,8 до 0,9 Вт/м К.
  2. Теплопроводность силикатного кирпича зависит от количества содержащихся в нем пустот (для щелевого он будет равен 0,4 Вт/м К), у имеющего технические пустоты цифра поднимается до 0,66, а у полнотелого варианта данные уже будут составлять 0,8 Вт/м К.
  3. Керамический кирпич коэффициент теплопроводности также имеют разный (в зависимости от представленного вида): коэффициент теплопроводности полнотелого кирпича дает цифры от 0,5 до 0,8, щелевой имеет 0,34-0,43, а поризованный — 0,22 Вт/м К. Теплопроводность керамического кирпича с порами внутри будет равна примерно 0,57 Вт/м К (однако даже эти цифры могут зависеть от пор, расположенных в нем).

В рамках этого анализа обязательно надо отметить, что коэффициент теплопередачи кирпича еще не самый высокий — газобетон, к примеру, еще лучший проводник. Чтобы возводимые здания были по-настоящему теплыми, нужно при возведении сочетать многие составляющие, главным из которых будет количество пор.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности

Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Размеры и форма

Это прямоугольный параллелепипед с прямыми ребрами и углами. Глиняный кирпич имеет такие размеры: 250×120×65 мм. Обжиг чреват неизбежными усадками, поэтому существуют допуски, мм:

  • Длина — ±6.
  • Ширина — ±4.
  • Высота — ±3.
  • На искривление:
    • поверхность — ±4;
    • ребра — ± 5.

Частым недостатком формы является затупление и отбитость углов и ребер. В одном изделии допустимо до двух таких дефектов не более 15 мм. Этот недостаток не влияет на прочность кладки, но для заполнения неровностей требует большего расхода строительного раствора. Стандартные размеры глиняного кирпича могут меняться только по высоте: полуторный (88 мм), двойной (138 мм). Есть и иные нестандартные размеры кирпича:

  • четвертной;
  • восьмерной;
  • реставрационный.

Классификация по пустотелости:

  • Полнотелый экземпляр может иметь технические отверстия, до 13% общего объема.
  • Щелевой до 45% отверстий. Его теплоизолирующая способность выше и это позволяет уменьшить толщину стены без потери прочности.

Особенности и отличия типов кирпича

Строительное назначение различных марок кирпича разное – это специальный кирпич, облицовочный и строительные марки. При возведении дома используют обычный строительный кирпич, для декорирования фасадов домов – облицовочные изделия, а специальные марки используют для особых условий эксплуатации конструкции из кирпича, например, в печи или камине.

Полнотелые кирпичные изделия, согласно технологии изготовления, имеют ≤ 13% воздушных пустот: такой кирпич подходит для строительства наружных и внутренних стен дома, колонн и столбов, перемычек и арок. Объекты из полнотелого кирпича могут выдерживать повышенную нагрузку из-за высоких показателей прочности по сжатию, изгибанию и морозоустойчивости. Параметры теплоизоляции кирпича, свойства водопоглощения и сцепляемость зависят от степени пористости изделия. Этот кирпич имеет средние показатели сопротивления к теплопередаче, поэтому стены дома рекомендуется делать достаточно толстыми (не менее 0,5 метра), и проводить утепление другими средствами.

Пустотелый кирпич производится с объемом пустот ≤ 45%, поэтому его вес меньше, чем у стандартного полнотелого кирпича. Его используют при строительстве внутренних перегородок, наружных стен и каркасов многоэтажных высотных домов. Форма пустот бывает сквозной или односторонней (закрытой с торца), в форме круга, квадрата, овала или прямоугольника. Формируют пустоты в вертикальном или горизонтальном направлении относительно продольной оси изделия.

Пустоты в и без того небольшом изделии экономят почти половину строительного материала и делают стены теплее. При укладке пустотелого кирпича необходимо контролировать консистенцию цементного раствора – он не должен растекаться по поверхности и заполнять пустоты, которые формируют в стене, о чем писалось выше.

Назначение облицовочного кирпича понятно из его названия – он используется для облицовки фасадов и боковых стен дома. Размеры облицовочных изделий такие же, как и у обычного строительного кирпича (можно приобрести и партию с уменьшенными размерами), что облегчает работу с ним. Кирпич для облицовки часто изготавливают с пустотами, что улучшает его потребительские характеристики – работая с таким кирпичом, можно сэкономить на дополнительной теплоизоляции стен.

Пример марок специальных кирпичей – теплоизолирующие и огнеупорные изделия. Обе марки используют при строительстве печей для обогрева и домашних каминов, а также промышленных плавильных печей. Материал для изготовления – шамотная глина с особыми свойствами огнеупорности. При этом разные технологии изготовления позволяют использовать огнеупорный кирпич для разных условий эксплуатации. Например, кирпич с огнеупорными свойствами может выдержать температуру больше 1600 °С, а теплоизолирующие марки кирпича применяют в технологиях теплоизоляции, например, при нагревании наружных стенок мартеновских печей, а также для предотвращения потерь тепла в зданиях. Для строительства наружных несущих стен дома огнеупорный кирпич не годится – из-за невысокой прочности на сжатие из него можно строить только внутренние перегородки в доме.

Основное предназначение клинкерного кирпича – облицовка фундаментов домов. Эта марка имеет высокий коэффициент морозоустойчивости, механической прочности и водопоглощения, так как для его изготовления используют тугоплавкую глину. Сырой клинкерный кирпич обжигается при более высоких температурах, чем при обжиге обычных марок кирпича.

голоса

Рейтинг статьи

Особенности изготовления

Способы производства делятся на такие, как:

  • полусухое прессование;
  • неполный обжиг или только тепловая сушка;
  • запекание глин и их смесей.

В природе редко встречается глина без примесей. Изделия из слишком жирной или, наоборот, тощей глины будут непрочны. Правильные пропорции очень важны для получения качественного стройматериала. Процесс изготовления имеет такой алгоритм: подготовленную глиняную смесь закладывают в формы, затем кирпич сушат (от 6 до 15 дней). На этом этапе производство сырца и заканчивается. Обжиг кирпича в специальных печах при температуре 900—1000 °С превратит глину в керамику. Время и температура плавления зависят от марки и класса.

Самостоятельно изготавливается печь из бочки.

В кустарных условиях тоже можно сделать печь для обжига из железной бочки, которую устанавливают над ямой с дровами для топки. Уложить сырой кирпич в бочку, оставив между ними зазоры для лучшего пропекания. Нагревать разведенным под ней костром следует 20—22 часа, затем около 6 ч. бочка должна самостоятельно остынуть. Извлечь готовые изделия.

Особенности и отличия типов кирпича

Строительное назначение различных марок кирпича разное – это специальный кирпич, облицовочный и строительные марки. При возведении дома используют обычный строительный кирпич, для декорирования фасадов домов – облицовочные изделия, а специальные марки используют для особых условий эксплуатации конструкции из кирпича, например, в печи или камине.
Полнотелый кирпич

Полнотелые кирпичные изделия, согласно технологии изготовления, имеют ≤ 13% воздушных пустот: такой кирпич подходит для строительства наружных и внутренних стен дома, колонн и столбов, перемычек и арок. Объекты из полнотелого кирпича могут выдерживать повышенную нагрузку из-за высоких показателей прочности по сжатию, изгибанию и морозоустойчивости. Параметры теплоизоляции кирпича, свойства водопоглощения и сцепляемость зависят от степени пористости изделия. Этот кирпич имеет средние показатели сопротивления к теплопередаче, поэтому стены дома рекомендуется делать достаточно толстыми (не менее 0,5 метра), и проводить утепление другими средствами.

Пустотелый кирпич производится с объемом пустот ≤ 45%, поэтому его вес меньше, чем у стандартного полнотелого кирпича. Его используют при строительстве внутренних перегородок, наружных стен и каркасов многоэтажных высотных домов. Форма пустот бывает сквозной или односторонней (закрытой с торца), в форме круга, квадрата, овала или прямоугольника. Формируют пустоты в вертикальном или горизонтальном направлении относительно продольной оси изделия.

Пустоты в и без того небольшом изделии экономят почти половину строительного материала и делают стены теплее. При укладке пустотелого кирпича необходимо контролировать консистенцию цементного раствора – он не должен растекаться по поверхности и заполнять пустоты, которые формируют в стене, о чем писалось выше.
Пустотелый кирпич

Назначение облицовочного кирпича понятно из его названия – он используется для облицовки фасадов и боковых стен дома. Размеры облицовочных изделий такие же, как и у обычного строительного кирпича (можно приобрести и партию с уменьшенными размерами), что облегчает работу с ним. Кирпич для облицовки часто изготавливают с пустотами, что улучшает его потребительские характеристики – работая с таким кирпичом, можно сэкономить на дополнительной теплоизоляции стен.
Кирпич облицовочный

Пример марок специальных кирпичей – теплоизолирующие и огнеупорные изделия. Обе марки используют при строительстве печей для обогрева и домашних каминов, а также промышленных плавильных печей. Материал для изготовления – шамотная глина с особыми свойствами огнеупорности. При этом разные технологии изготовления позволяют использовать огнеупорный кирпич для разных условий эксплуатации. Например, кирпич с огнеупорными свойствами может выдержать температуру больше 1600 °С, а теплоизолирующие марки кирпича применяют в технологиях теплоизоляции, например, при нагревании наружных стенок мартеновских печей, а также для предотвращения потерь тепла в зданиях. Для строительства наружных несущих стен дома огнеупорный кирпич не годится – из-за невысокой прочности на сжатие из него можно строить только внутренние перегородки в доме.

 
Огнеупорный кирпич

Основное предназначение клинкерного кирпича – облицовка фундаментов домов. Эта марка имеет высокий коэффициент морозоустойчивости, механической прочности и водопоглощения, так как для его изготовления используют тугоплавкую глину. Сырой клинкерный кирпич обжигается при более высоких температурах, чем при обжиге обычных марок кирпича.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Понятие теплопроводности и ее показатель у силикатного кирпича

Поскольку в общих характеристиках мы уже разобрались, пришло время перейти непосредственно к теме статьи. Рассмотрим, что такое коэффициент теплопроводности силикатного кирпича.

Способность силикатного кирпича к сохранению тепла

Теплопроводность – это способность материалов (изделий) к сохранению температуры. Чем он ниже, тем выше эта способность. В будущем, низкий показатель может способствовать экономии на утеплении строения и его отоплении.

В целом, при учете соотношения коэффициента теплопроводности силикатного кирпича и его плотности, показатель достаточно конкурентный, однако, если рассматривать данные свойства по отдельности, то многим материалам он уступает.

Рассмотрим, при помощи каких приемов, можно увеличить способность к сохранению тепла:

  • При использовании специализированных добавок можно добиться процентного увеличения воздушных пор по отношению к общей массе, при этом плотность будет уменьшена;
  • Возможно формирование в теле изделия искусственно созданных пустот, которые приведут к снижению веса и теплопроводности;
  • Возможно также применение теплоизолирующего покрытия лицевой части изделия, а также гидрофобной добавки.

Стоит обратить внимание на то, что чем плотнее кирпич, тем меньше его процент водопоглощения. Последнее также влияет на коэффициент теплопроводности

При эксплуатационной влажности он повышается.

А теперь рассмотрим при помощи таблицы, как изменяется теплопроводность разных марок кирпича силикатного.

Таблица 2. Показатели свойств кирпича в зависимости от прочности:

Наименование показателяКирпич силикатный полнотелый М125Кирпич силикатный полнотелый М150Кирпич силикатный полнотелый М200
Прочность на сжатие кг/см2135-145150-185215-2560
Морозостойкость30-4035-5035-50
Теплопроводность0,60,650,7
Водопоглощение8,3%7,2%8-9%
Масса в сухом виде3,73,7-3,83,8-4,0

Способность будущего здания к сохранению тепла будет увеличиваться при большей толщине стены. Так, например, при ее толщине, равной 20 см, теплопроводность будет составлять 4,5, а при 90 см, она будет уменьшена до 1,4.

Понижают данный коэффициент и при помощи утепления конструкции, но об этом поговорим несколько позже.

Сравнение теплопроводности силикатного кирпича с другими стеновыми материалами

А сейчас давайте сравним теплопроводность силикатного кирпича с другими видами изделий, предназначенных для возведения стен.

Таблица 3.Кирпич силикатный: теплопроводность, плотность, прочность и сравнение этих показателей с другими материалами:

Наименование материалаПлотность кг/м³Прочность МПаТеплопроводность Вт/м·°С
Силикатный кирпич1800-19007,5-15В среднем – 0,7
Газоблок300-12001,5-7,50,09-0,34
Пеноблок300-12001,5-50,08-0,32
Керамзитобетон400-20007,5-10От 0,14
Керамический кирпич1550-19007,5-10От 0,45

Как видно, соотношение плотности, прочности и теплопроводности материала достаточно хорошее. Ячеистые бетоны, разумеется, в лидерах, однако плотность их значительно ниже.

Кирпич силикатный коэффициент теплопроводности, сравнение

Приложение А (обязательное)

Таблица А.1

Материалы (конструкции)

Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации

А

Б

1 Пенополистирол

2

10

2 Пенополистирол экструзионный

2

3

3 Пенополиуретан

2

5

4 Плиты из резольно-фенолформальдегидного пенопласта

5

20

5 Перлитопластбетон

2

3

6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс»

5

15

7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс»

8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна)

2

5

9 Пеностекло или газостекло

1

2

10 Плиты древесно-волокнистые и древесно-стружечные

10

12

11 Плиты фибролитовые и арболит на портландцементе

10

15

12 Плиты камышитовые

10

15

13 Плиты торфяные теплоизоляционные

15

20

14 Пакля

7

12

15 Плиты на основе гипса

4

6

16 Листы гипсовые обшивочные (сухая штукатурка)

4

6

17 Изделия из вспученного перлита на битумном связующем

1

2

18 Гравий керамзитовый

2

3

19 Гравий шунгизитовый

2

4

20 Щебень из доменного шлака

2

3

21 Щебень шлакопемзовый и аглопоритовый

2

3

22 Щебень и песок из вспученного перлита

5

10

23 Вермикулит вспученный

1

3

24 Песок для строительных работ

1

2

25 Цементно-шлаковый раствор

2

4

26 Цементно-перлитовый раствор

7

12

27 Гипсоперлитовый раствор

10

15

28 Поризованный гипсоперлитовый раствор

6

10

29 Туфобетон

7

10

30 Пемзобетон

4

6

31 Бетон на вулканическом шлаке

7

10

32 Керамзитобетон на керамзитовом песке и керамзитопенобетон

5

10

33 Керамзитобетон на кварцевом песке с поризацией

4

8

34 Керамзитобетон на перлитовом песке

9

13

35 Шунгизитобетон

4

7

36 Перлитобетон

10

15

37 Шлакопемзобетон (термозитобетон)

5

8

38 Шлакопемзопено- и шлакопемзогазобетон

8

11

39 Бетон на доменных гранулированных шлаках

5

8

40 Аглопоритобетон и бетон на топливных (котельных) шлаках

5

8

41 Бетон на зольном гравии

5

8

42 Вермикулитобетон

8

13

43 Полистиролбетон

4

8

44 Газо- и пенобетон, газо- и пеносиликат

8

12

45 Газо- и пенозолобетон

15

22

46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе

1

2

47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе

1,5

3

48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе

2

4

49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе

2

4

50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе

2

4

51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе

1,5

3

52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе

1

2

53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе

2

4

54 Древесина

15

20

55 Фанера клееная

10

13

56 Картон облицовочный

5

10

57 Картон строительный многослойный

6

12

58 Железобетон

2

3

59 Бетон на гравии или щебне из природного камня

2

3

60 Раствор цементно-песчаный

2

4

61 Раствор сложный (песок, известь, цемент)

2

4

62 Раствор известково-песчаный

2

4

63 Гранит, гнейс и базальт

64 Мрамор

65 Известняк

2

3

66 Туф

3

5

67 Листы асбестоцементные плоские

2

3

Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость

Коэффициент теплопроводности кирпичей

Данный коэффициент обозначается буквой λ и выражается в W/(m*K).

Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:

  1. Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
  2. Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
  3. Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
  4. Силикатный, с техническими пустотами λ= 0,66.
  5. Керамический кирпич пустотелого исполнения λ= 0,57.
  6. Керамический кирпич щелевого типа λ= 0,4.
  7. Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
  8. Керамический поризованный λ= 0,22.
  9. Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.

Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003

Все познается в сравнении: возможности использования

теплопроводность глиняного кирпича

Цифры могут варьироваться у каждого из вышепредставленных видов. Свой коэффициент теплопроводности силикатный кирпич зарабатывает еще и от веса каждого из блоков

Отсюда вывод: если решено строить именного из него, то следует обращать внимание на размеры брусков (меньше размер — больше коэффициент теплопроводности силикатного кирпича). Нельзя забывать одну главную вещь: при относительной дешевизне такого товара, к нему должны идти еще и дополнительные утеплители

Коэффициент перевода кирпича-клинкера показывает прекрасные данные. Но даже с ними его очень редко выбирают для того, чтобы возвести поверхность. А вот мощение дорожного полотна или полы в помещениях пройдут на «ура». И уже сам высокий коэффициент теплопроводности кирпича такого вида указывает на то, что его не следует брать для того, чтобы возвести какие-либо утепленные конструкции.

Когда речь идет именно о специальном виде, нельзя не упомянуть тот материал, который используется для строительства каминов и им подобных вещей. Его состав предполагает быструю отдачу тепла, а, значит, коэффициент теплопроводности шамотного кирпича будет колебаться от 0,6 до 0,7 Вт/(моС).

Исходя из всего вышесказанного, можно сделать главный вывод — самым популярным для использования будет являться пустотный, а коэффициент теплопроводности кирпича красного позволяет его выделить среди других в качестве примера, какой должна быть теплопроводность глиняного кирпича. Развитая пустотная система внутри него справится с этим на «отлично».

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий